Роль туннельного эффекта в ядерных реакциях. Квантовый туннельный эффект

> Квантовое туннелирование

Изучите квантовый туннельный эффект . Узнайте, при каких условиях возникает эффект туннельного зрения, формула Шредингера, теория вероятности, орбитали атомов.

Если объекту не хватает энергии, чтобы пробиться сквозь барьер, то он способен туннелироваться через воображаемое пространство с другой стороны.

Задача обучения

  • Выявить факторы, влияющие на вероятность туннелирования.

Основные пункты

  • Квантовое туннелирование используют для любых объектов перед барьером. Но в макроскопических целях вероятность возникновения небольшая.
  • Туннельный эффект возникает из-за мнимой компонентной формулы Шредингера. Так как она присутствует в волновой функции любого объекта, то может существовать в воображаемом пространстве.
  • Туннелирование сокращается с ростом массы тела и увеличением разрыва между энергиями объекта и барьера.

Термин

  • Туннелирование – квантово-механическое прохождение частички сквозь энергетический барьер.

Как возникает туннельный эффект? Вообразите, что вы бросаете мяч, но он исчезает мгновенно, так и не коснувшись стены, и появляется с другой стороны. Стена здесь останется целой. Удивительно, но существует конечная вероятность того, что это событие осуществится. Явление именуют квантовым туннельным эффектом.

На макроскопическом уровне возможность туннелирования остается незначительной, но она постоянно наблюдается в наномасштабах. Давайте посмотрим на атом с р-орбиталью. Между двумя долями расположена узловая плоскость. Есть вероятность, что в любой ее точке можно найти электрон. Однако электроны переходят от одной доли к другой путем квантового туннелирования. Им просто нельзя находиться в узловой области, и они путешествуют по воображаемому пространству.

Красная и синяя доли показывают объемы, где присутствует 90% вероятность обнаружения электрона в любой временной промежуток, если орбитальная зона занята

Временное пространство не выступает реальным, но оно активно участвует в формуле Шредингера:

Вся материя располагает волновым компонентом и может существовать в мнимом пространстве. Понять разницу вероятности туннелирования поможет комбинация массы, энергии и высоты энергии объекта.

Когда объект подходит к барьеру, волновая функция меняется от синусоидальной до экспоненциально сокращающейся. Формула Шредингера:

Вероятность туннелирования становится меньше при росте массы объекта и возрастания разрыва между энергиями. Волновая функция никогда не приближается к 0, поэтому туннелирование так часто встречается в наномасштабах.

  • Физика
    • Перевод

    Начну с двух простых вопросов с достаточно интуитивными ответами. Возьмём чашу и шарик (рис. 1). Если мне нужно, чтобы:

    Шарик оставался неподвижным после того, как я помещу его в чашу, и
    он оставался примерно в том же положении при перемещении чаши,

    То куда мне его положить?

    Рис. 1

    Конечно, мне нужно положить его в центр, на самое дно. Почему? Интуитивно ясно, что если я положу его куда-то ещё, он скатится до дна, и будет болтаться туда и сюда. В итоге трение уменьшит высоту болтаний и затормозит его внизу.

    В принципе можно попробовать уравновесить шарик на краю чаши. Но если я немного потрясу её, шарик потеряет равновесие у падёт. Так что это место не удовлетворяет второму критерию в моём вопросе.

    Назовём положение, в котором шарик остаётся неподвижным, и от которого он не сильно отклоняется при небольших движениях чаши или шарика, «стабильным положением шарика». Дно чаши - такое стабильное положение.

    Другой вопрос. Если у меня есть две чаши, как на рис. 2, где будут стабильные положения для шарика? Это тоже просто: таких мест два, а именно, на дне каждой из чаш.


    Рис. 2

    Наконец, ещё один вопрос с интуитивно понятным ответом. Если я размещу шарик на дне чаши 1, а потом выйду из комнаты, закрою её, гарантирую, что никто туда не зайдёт, проверю, что в этом месте не было землетрясений и других потрясений, то каковы шансы, что через десять лет, когда я вновь открою комнату, я обнаружу шарик на дне чаши 2? Конечно, нулевые. Чтобы шарик переместился со дна чаши 1 на дно чаши 2, кто-то или что-то должны взять шарик и переместить его с места на место, над краем чаши 1, в сторону чаши 2 и затем над краем чаши 2. Очевидно, что шарик останется на дне чаши 1.

    Очевидно и по сути верно. И всё же, в квантовом мире, в котором мы живём, ни один объект не остаётся по-настоящему неподвижным, и его положение точно неизвестно. Так что ни один из этих ответов не верен на 100%.

    Туннелирование



    Рис. 3

    Если я размещу элементарную частицу вроде электрона в магнитной ловушке (рис. 3) работающей, как чаша, стремящейся подтолкнуть электрон к центру точно так же, как гравитация и стены чаши толкают шарик к центру чаши на рис. 1, тогда каково будет стабильное положение электрона? Как и следовало интуитивно ожидать, среднее положение электрона будет стационарным, только если разместить его в центре ловушки.

    Но квантовая механика добавляет один нюанс. Электрон не может оставаться неподвижным; его положение подвержено «квантовому дрожанию». Из-за этого его положение и движение постоянно меняется, или даже обладает некоей долей неопределённости (это работает знаменитый «принцип неопределённости»). Только среднее положение электрона находится в центре ловушки; если посмотреть на электрон, то он окажется где-нибудь в другом месте ловушки, рядом с центром, но не совсем там. Электрон неподвижен только в таком смысле: он обычно двигается, но его движение случайное, и поскольку он находится в ловушке, в среднем он никуда не сдвигается.

    Это немного странно, но всего лишь отражает тот факт, что электрон представляет собой не то, что вы думаете, и не ведёт себя так, как любой из виденных вами объектов.

    Это, кстати, также гарантирует, что электрон нельзя уравновесить на краю ловушки, в отличие от шарика на краю чаши (как внизу на рис. 1). Положение электрона не определено точно, поэтому его нельзя точно уравновесить; поэтому, даже без встряхиваний ловушки, электрон потеряет равновесие и почти сразу сорвётся.

    Но что более странно, так это тот случай, когда у меня будет две ловушки, отделённые друг от друга, и я размещу электрон в одной из них. Да, центр одной из ловушек - хорошее, стабильное положение для электрона. Это так - в том смысле, что электрон может оставаться там и не убежит, если потрясти ловушку.

    Однако, если разместить электрон в ловушке №1, и уйти, закрыть комнату и т.п., существует определённая вероятность того (рис. 4), что, когда я вернусь электрон будет находиться в ловушке №2.


    Рис. 4

    Как он это сделал? Если представлять себе электроны в виде шариков, вы этого не поймёте. Но электроны не похожи на шарики (или, по крайней мере, на ваше интуитивное представление о шариках), и их квантовое дрожание даёт им крайне небольшой, но ненулевой шанс «прохода сквозь стены» - кажущаяся невероятной возможность переместиться на другую сторону. Это называется туннелированием - но не надо думать, что электрон прокапывает дырку в стене. И вы никогда не сможете поймать его в стене - так сказать, с поличным. Просто стена не полностью непроницаема для таких вещей, как электрон; электроны нельзя так легко поймать в ловушку.

    На самом деле, всё ещё безумнее: поскольку это правда для электрона, это правда и для шарика в вазе. Шарик может оказаться в вазе 2, если подождать достаточно долго. Но вероятность этого чрезвычайно мала. Так мала, что даже если подождать миллиард лет, или даже миллиарды миллиардов миллиардов лет, этого будет недостаточно. С практической точки зрения этого «никогда» не произойдёт.

    Наш мир - квантовый, и все объекты состоят из элементарных частиц и подчиняются правилам квантовой физики. Квантовое дрожание присутствует постоянно. Но большая часть объектов, масса которых велика по сравнению с массой элементарных частиц - шарик, к примеру, или даже пылинка - это квантовое дрожание слишком мелкое, чтобы его обнаружить, за исключением особо разработанных экспериментов. И следующая из этого возможность туннелировать сквозь стены тоже не наблюдается в обычной жизни.

    Иначе говоря: любой объект может туннелировать сквозь стену, но вероятность этого обычно резко уменьшается, если:

    У объекта большая масса,
    стена толстая (большое расстояние между двумя сторонами),
    стену трудно преодолеть (чтобы пробить стену, нужно много энергии).

    В принципе шарик может преодолеть край чаши, но на практике это может оказаться невозможным. Электрону может быть легко сбежать из ловушки, если ловушки расположены близко и не очень глубокие, но может быть и очень сложно, если они расположены далеко и очень глубокие.

    А точно туннелирование происходит?



    Рис. 5

    А может, это туннелирование - просто теория? Точно нет. Оно фундаментально для химии, происходит во многих материалах, играет роль в биологии, и это принцип, используемый в наших самых хитрых и мощных микроскопах.

    Для краткости давайте я остановлюсь на микроскопе. На рис. 5 представлено изображение атомов, сделанное при помощи сканирующего туннельного микроскопа . У такого микроскопа есть узкая игла, чей кончик двигается в непосредственной близости к изучаемому материалу (см. рис. 6). Материал и иголка, разумеется, состоят из атомов; а на задворках атомов находятся электроны. Грубо говоря, электроны находятся в ловушке внутри изучаемого материала или на кончике микроскопа. Но чем ближе кончик к поверхности, тем более вероятен туннельный переход электронов между ними. Простое устройство (между материалом и иглой поддерживается разница потенциалов) гарантирует, что электроны предпочтут перескакивать с поверхности на иглу, и этот поток - электрический ток, поддающийся измерению. Игла двигается над поверхностью, и поверхность оказывается то ближе, то дальше от кончика, и ток меняется - становится сильнее с уменьшением расстояния и слабее с увеличением. Отслеживая ток (или, наоборот, двигая иглу вверх и вниз для поддержания постоянного тока) при сканировании поверхности, микроскоп делает вывод о форме этой поверхности, и часто детализации хватает для того, чтобы разглядеть отдельные атомы.


    Рис. 6

    Туннелирование играет и множество других ролей в природе и современных технологиях.

    Туннелирование между ловушками разной глубины

    На рис. 4 я подразумевал, что у обеих ловушек одинаковая глубина - точно так же, как у обеих чаш на рис. 2 одинаковая форма. Это означает, что электрон, находясь в любой из ловушек, с одинаковой вероятностью перескочит в другую.

    Теперь допустим, что одна ловушка для электрона на рис. 4 глубже другой - точно так же, как если бы одна чаша на рис. 2 была глубже другой (см. рис. 7). Хотя электрон может туннелировать в любом направлении, ему будет гораздо проще туннелировать из более мелкой в более глубокую ловушку, чем наоборот. Соответственно, если мы подождём достаточно долго, чтобы у электрона было достаточно времени туннелировать в любом направлении и вернуться, а затем начнём проводить измерения с целью определить его местонахождение, мы чаще всего будем находить его в глубокой ловушке. (На самом деле и тут есть свои нюансы, всё зависит ещё и от формы ловушки). При этом разница глубин не обязательно должна быть крупной для того, чтобы туннелирование из более глубокой в более мелкую ловушку стало чрезвычайно редким.

    Короче, туннелирование в целом будет происходить в обоих направлениях, но вероятность перехода из мелкой ловушки в глубокую гораздо больше.


    Рис. 7

    Именно эта особенность используется в сканирующем туннельном микроскопе, чтобы гарантировать, что электроны будут переходить только в одном направлении. По сути кончик иглы микроскопа оказывается более глубокой ловушкой, чем изучаемая поверхность, поэтому электроны предпочитают туннелировать из поверхности на иглу, а не наоборот. Но микроскоп будет работать и в противоположном случае. Ловушки делаются глубже или мельче при помощи источника питания, создающего разность потенциалов между иглой и поверхностью, что создаёт разницу в энергиях у электронов на игле и электронов на поверхности. Поскольку заставить электроны чаще туннелировать в одном направлении, чем в другом, оказывается довольно просто, это туннелирование становится практически полезным для использования в электронике.

    Туннельный эффект
    Tunneling effect

    Туннельный эффект (туннелирование) – прохождение частицы (или системы) сквозь область пространства, пребывание в которой запрещено классической механикой. Наиболее известный пример такого процесса – прохождение частицы сквозь потенциальный барьер, когда её энергия Е меньше высоты барьера U 0 . В классической физике частица не может оказаться в области такого барьера и тем более пройти сквозь неё, так как это нарушает закон сохранения энергии. Однако в квантовой физике ситуация принципиально другая. Квантовая частица не движется по какой-либо определенной траектории. Поэтому можно лишь говорить о вероятности нахождения частицы в определенной области пространства ΔрΔх > ћ. При этом ни потенциальная, ни кинетическая энергии не имеют определенных значений в соответствии с принципом неопределенности. Допускается отклонение от классической энергии Е на величину ΔЕ в течение интервалов времени t, даваемых соотношением неопределённостей ΔЕΔt > ћ (ћ = h/2π, где h – постоянная Планка).

    Возможность прохождения частицы сквозь потенциальный барьер обусловлена требованием непрерывной волновой функции на стенках потенциального барьера. Вероятность обнаружения частицы справа и слева связаны между собой соотношением, зависящим от разности E - U(x) в области потенциального барьера и от ширины барьера x 1 - x 2 при данной энергии.

    С увеличением высоты и ширины барьера вероятность туннельного эффекта экспоненциально спадает. Вероятность туннельного эффекта также быстро убывает с увеличением массы частицы.
    Проникновение сквозь барьер носит вероятностный характер. Частица с Е < U 0 , натолкнувшись на барьер, может либо пройти сквозь него, либо отразиться. Суммарная вероятность этих двух возможностей равна 1. Если на барьер падает поток частиц с Е < U 0 , то часть этого потока будет просачиваться сквозь барьер, а часть – отражаться. Туннельное прохождение частицы через потенциальный барьер лежит в основе многих явлений ядерной и атомной физики: альфа-распад, холодная эмиссия электронов из металлов, явления в контактном слое двух полупроводников и т.д.

    (решение задач блока ФИЗИКА, как и других блоков, позволит отобрать ТРЕХ человек на очный тур, набравших при решении задач ЭТОГО блока наибольшее количество баллов. Дополнительно по результатам очного тура эти претенденты будут бороться за специальную номинацию «Физика наносистем ». На очный тур будет отобрано также еще 5 человек, набравших наибольшее абсолютное количество баллов, поэтому после решения задач по своей специальности есть полный смысл решать задачи из других блоков . )

    Одним из основных отличий наноструктур от макроскопических тел является зависимость их химических и физических свойств от размера. Наглядным примером этого служит туннельный эффект, который заключается в проникновении легких частиц (электрона, протона) в области, недоступные для них энергетически. Этот эффект играет важную роль в таких процессах как например перенос заряда в фотосинтетических устройствах живых организмов (стоит заметить, что биологические реакционные центры являются одними из наиболее эффективных наноструктур).

    Туннельный эффект можно объяснить волновой природой легких частиц и принципом неопределенности. Благодаря тому, что частицы малого размера не имеют определенного положения в пространстве, для них не существует понятия траектории. Следовательно, для перемещения из одной точки в другую частица не должна проходить по линии, их соединяющей, и таким образом может «обходить» области, запрещенные по энергии. В связи с отсутствием у электрона точной координаты, его состояние описывают с помощью волновой функции, характеризующей распределение вероятности по координате. На рисунке показан типичный вид волновой функции при туннелировании под энергетический барьер.

    Вероятность p проникновения электрона сквозь потенциальный барьер зависит от высоты U и ширины последнего l (формула 1 , слева), где m – масса электрона, E – энергия электрона, h – постоянная Планка с чертой.

    1. Определите вероятность, того что электрон туннелирует на расстояние 0.1 нм, если разница энергий U – E = 1 эВ (2 балла ). Рассчитайте разность энергий (в эВ и кДж/моль), при которой электрон сможет туннелировать на расстояние 1 нм с вероятностью 1% (2 балла ).

    Одним из наиболее заметных следствий туннельного эффекта является необычная зависимость константы скорости химической реакции от температуры. При уменьшении температуры константа скорости стремится не к 0 (как можно ожидать из уравнения Аррениуса), а к постоянному значению, которое определяется вероятностью туннелирования ядер p (ф ормула 2 , слева), где A – предэкспоненциальный множитель, E A – энергия активации. Это можно объяснить тем, что при высоких температурах в реакцию вступают только те частицы, энергия которых выше энергии барьера, а при низких температурах реакция идет исключительно за счет туннельного эффекта.

    2. Из приведенных ниже экспериментальных данных определите энергию активации и вероятность туннелирования (3 балла ).

    k (T ), c – 1

    В современных квантовых электронных устройствах используется эффект резонансного туннелирования. Этот эффект проявляется, если электрон встречает два барьера, разделенные потенциальной ямой. Если энергия электрона совпадает с одним из уровней энергии в яме (это – условие резонанса), то общая вероятность туннелирования определяется прохождением через два тонких барьера, если же нет – то на пути электрона встает широкий барьер, который включает потенциальную яму, и общая вероятность туннелирования стремится к 0.

    3. Сравните вероятности резонансного и нерезонансного туннелирования электрона при следующих параметрах: ширина каждого из барьеров 0.5 нм, ширина ямы между барьерами 2 нм, высота всех потенциальных барьеров относительно энергии электрона равна 0.5 эВ (3 балла ). В каких устройствах используется принцип туннелирования (3 балла )?

    Рассмотрим простейший потенциальный барьер прямоугольной формы (рис. 5.4) для одномерного (по оси х ) движения частицы.

    Для потенциального барьера прямоугольной формы высоты U и ширины l можно записать:

    При данных условиях задачи классическая частица, обладая энергией Е , либо беспрепятственно пройдет над барьером при E > U , либо отразится от него (E < U ) и будет двигаться в обратную сторону, т.е. она не может проникнуть через барьер.

    Для микрочастиц же, даже при E < U , имеется отличная от нуля вероятность, что частица отразится от барьера и будет двигаться в обратную сторону. При E > U имеется также отличная от нуля вероятность, что частица окажется в области x > l , т.е. проникнет сквозь барьер. Такой вывод следует непосредственно из решения уравнения Шредингера, описывающего движение микрочастицы при данных условиях задачи.

    Уравнение Шредингера для состояний каждой из выделенных областей имеет вид:

    , (5.4.1)
    . (5.4.2)

    Общее решение этих дифференциальных уравнений:

    (5.4.3)

    В данном случае, согласно (5.4.2), – мнимое число, где

    Можно показать, что A 1 = 1, B 3 = 0, тогда, учитывая значение q ,получим решение уравнения Шредингера для трех областей в следующем виде:

    (5.4.4)

    В области 2 функция (5.4.4) уже не соответствует плоским волнам, распространяющимся в обе стороны, поскольку показатели степени не мнимые, а действительные.

    Качественный анализ функций Ψ 1 (x ), Ψ 2 (x ), Ψ 3 (x ) показан на рис. 5.4. Из рисунка следует, что волновая функция не равна нулю и внутри барьера , а в области 3, если барьер не очень широк, будет опять иметь вид волн де Бройля с тем же импульсом , т.е. с той же частотой , но с меньшей амплитудой .

    Таким образом, квантовая механика приводит к принципиально новому квантовому явлению туннельному эффекту , в результате которого микрообъект может пройти через барьер.

    Коэффициент прозрачности для барьера прямоугольной формы .

    Для барьера произвольной формы .

    Прохождение частицы сквозь барьер можно пояснить соотношением неопределенностей . Неопределенность импульса на отрезке Δx = l составляет Связанная с этим разбросом кинетическая энергия может оказаться достаточной для того, чтобы полная энергия оказалась больше потенциальной и частица может пройти через барьер.

    С классической точки зрения прохождение частицы сквозь потенциальный барьер при E < U невозможно, так как частица, находясь в области барьера, должна была бы обладать отрицательной кинетической энергией. Туннельный эффект является специфическим квантовым эффектом .

    Строгое квантово-механическое решение задачи о гармоническом осцилляторе приводит еще к одному существенному отличию от классического рассмотрения. Оказывается, что можно обнаружить частицу за пределами дозволенной области ( , ) (рис. 5.5), т.е. за точками 0 и l (рис. 5.1).

    Это означает, что частица может прибывать там, где ее полная энергия меньше потенциальной энергии. Это оказывается возможным вследствие туннельного эффекта.

    Основы теории туннельных переходов заложены работами советских ученых Л.И. Мандельштама и М.А. Леонтовича в 1928 г. Туннельное прохождение сквозь потенциальный барьер лежит в основе многих явлений физики твердого тела (например явления в контактном слое на границе двух полупроводников), атомной и ядерной физики (например α-распад, протекание термоядерных реакций).